American Astronomical Society -White Paper

White Paper on Improving Mentored Experiences in Research in Astronomy and Physics

A response to the call by the education task force of the American Astronomical Society


The responsibility and opportunity to mentor the next generation of astronomers during research apprenticeships has been a key driver of progress in the field for generations. How did those of us who are now supervisors of undergraduate and graduate research students learn to mentor in the first place? Presumably, we took what we liked from our own experiences as mentees, rejected what we did not like, and then “just did it.” Many of us used to take a similar approach to teaching. However, now we have learned that there are a variety of best practices, techniques for focusing on the learners, evaluation procedures, etc. in the classroom. It is now time to take a similar and more systematic approach to mentoring research apprentices.

Our goal is for every astronomy department and astronomy research organization in the country to consider research mentoring as a skill to be developed and applied mindfully much like teaching in its best incarnations.  Research supervisors would routinely consider items like expectations, communication, how to assess whether a mentee really understands material, how to motivate effectively, etc. Institutions would consider the role of research mentoring in attracting and retaining a more diverse population of new and developing astronomers.

The AAS is already committed to fostering a positive mentoring experience for its members.  Indeed, item 4 in the five-element AAS mission and vision statement ( declares that “the Society, through its members, trains, mentors and supports the next generation of astronomers.”  Sessions, mostly sponsored by the Committees on the Status of Minorities / Women in Astronomy (CSMA and CSWA), on mentoring awareness, research mentor training, mentoring and networking have occurred at some of the bi-annual society meetings.  We call upon the AAS to build on this commitment and these efforts to promote effective research mentoring more widely and deeply across the discipline. 

The unique position of a professional society transcends institutions.

Individual departments and research groups may not have the time or resources to adequately investigate and implement mentor training opportunities and materials. Like it has for classroom instruction, the AAS can provide encouragement, guidance, recommendations, and an overview of available resources to improve the mentor and mentee experience.

We have the opportunity to work together with our sister organization the American Physical Society (APS) to promulgate better awareness of mentoring responsibilities and opportunities, disseminate training and self education materials, and foster a more inclusive, responsive, and effective developmental experience for the next generation of scientists across both disciplines.

The APS also recognizes the importance of mentoring as a key component in the success of physicists, especially those from underrepresented backgrounds in physics. Through collaboration with UW-Madison and the Center for the Integration of Research, Teaching and Learning in 2011, the APS produced the Physics Research Mentor Training Seminar, a facilitation guide to train those in mentorship roles in physics research, building on the evidence-based practices from the Entering Mentoring curriculum created by Dr. Jo Handelsman, Dr. Christine Pfund, and colleagues. Staff at the APS participated in an extensive train-the-trainer workshop to build capacity within the organization to offer mentor and mentee training sessions at scientific meetings and educational conferences, including the annual conference of the APS National Mentoring Community (NMC). The NMC was created in 2015 to support undergraduate students from underrepresented racial/ethnic minorities in physics in their pursuit of bachelor’s degrees in physics. Pairing local faculty and students, the NMC aids the development of mentoring relationships by providing resources throughout the year as well as during the annual conference. Participants gather to share experiences, discuss best practices, and build stronger connections within the physics community. The APS has made a substantial commitment of resources to establishing this mentoring community through staff time, student travel funding, and oversight by the APS Committee on Minorities. Future actions of the NMC involve establishing national mentoring awards and scholarships for students.

Focus on the apprentice relationship, not just the classroom.

Though improving teaching and learning in the classroom is important for increasing and broadening access to careers in astronomy, providing engaging research experiences for future astronomers is equally foundational. The pathway we have followed to improve teaching and learning in the classroom can serve as a model for efforts to improve mentored research experiences. Advances in teaching and learning have resulted from the use of evidence-based practices. Likewise, there are evidence-based practices for developing and nurturing effective mentor – trainee relationships, such as aligning expectations, communicating effectively and frequently, and creating opportunity for increased trainee independence over time. Like the implementation of effective teaching and learning practices, approaches to nurture an effective and rewarding mentor – trainee relationship  should be customized for individual mentors and trainees, depending on their styles and needs. Process-based curricula, such as Entering Mentoring and Entering Research, are grounded in evidence-based practices, yet are flexible enough to be customized. The AAS can buttress research trainee programs across institutions and at all levels, from undergraduate to post-doc, by supporting the incorporation of these, or other similar curricula, into our astronomy research training programs across the country.

Increase the diversity of the astronomy workforce.

Research from across disciplines indicates that mentoring has a positive impact on career success, satisfaction, and commitment. For undergraduates, mentored research experiences have been linked to gains in research skills and productivity as well as retention in science. The frequency and quality of mentee-mentor interactions has been associated with students’ persistence in STEM degrees. Graduate students who are mentored effectively are more likely to persevere in academic pursuits; positive mentoring is cited as a critical factor. For students from underrepresented racial and ethnic groups, mentorship has been shown to enhance recruitment into graduate school and research-related career pathways. The AAS recognizes some of the important mentoring roles for diversifying the field in its strategic plan (, but the plan omits mention of perhaps the most critical aspect of mentoring, that of the mentor and trainee in the conduct of research.  Because of the vital role mentoring plays in trainee persistence, especially among traditionally underrepresented groups, it offers a target for interventions aimed at diversifying the astronomy workforce.

Action items for the AAS.

  • Provide leadership within the discipline for research mentor and mentee training.
  • Provide frequent in-house training sessions, such as research mentor/mentee workshops, at Society meetings.
  • Reinforce the integration of research mentoring considerations into diversity efforts.
  • Foster a research mentoring network.
  • Build capacity within the profession, for example by training trainers. This could be done at both national and regional levels.
  • Provide links to research mentoring resources.
  • Establish a Society award for research mentoring.
  • Partner with the American Physical Society to improve the mentor and mentee experiences for researchers in both disciplines.

Thank you for your consideration.

With best regards,

Dr. Eric Hooper (, UW-Madison Astronomy and Physics

Dr. Robert Mathieu (, Director of the Wisconsin Center for Education Research, UW- Madison Professor of Astronomy

Dr. Christine Pfund (, UW-Madison, Director of the Center for the Improvement of Mentored Experiences in Research

Dr. Janet Branchaw (, UW-Madison, Director of the Wisconsin Institute for Science Education and Community Engagement, Assistant Professor of Kinesiology

Dr. Kathryne Sparks Woodle (, American Physical Society


Wisconsin Center for Education Research

University of Wisconsin-Madison

1025 West Johnson Street, Suite 557

Madison, Wisconsin 53706



Statement of support from the Center for the Improvement of Mentored Experiences in Research

The Center for the Improvement of Mentored Experiences in Research (CIMER) at UW-Madison supports the submission of this white paper to the American Astronomical Society.

CIMER works to improve the research mentoring relationships for mentees and mentors at all career stages through the development, implementation, and study of evidence-based and culturally-responsive interventions.

CIMER Advisory Committee Members:

Dr. Christine Pfund, Director of the Center for the Improvement of Mentored Experiences in Research

Dr. Chris Brace, Radiology and Biomedical Engineering

Dr. Janet Branchaw, Kinesiology, Wisconsin Institute for Science Education and Community Engagement

Dr. Angela Byars-Winston, School of Medicine, Center for Women’s Health Research

Dr. Andrew Greenberg, Chemical and Biological Engineering, Institute for Chemical Education

Dr. Eric Hooper, Astronomy and Physics

Dr. Robert Mathieu, Astronomy, Wisconsin Center for Education Research

Dr. Stephanie Robert,  Social Work

Dr. Chris Sorkness, Pharmacy, Institute for Clinical and Translational Research

Dr. Amber Smith, Faculty Associate for Research Mentor/Mentee Programs, Wisconsin Institute for Science Education and Community Engagement