The UI Journal Presents: The Use and Impact of NIH-fueled Resources for Mentoring— Reports from the Field

Recently, CIMER Executive Director Christine Pfund and WISCIENCE Director Janet Branchaw were chosen to be special editors in a special issue of the Understanding Interventions journal. In addition, a number of CIMER staff members and affiliates have articles featured in this special issue.  

See below for more information about this special issue of Understanding Interventions Journal.

The UI Journal Presents

In August 2019, the Special Issue editors elicited our interest in publishing a series of papers from the NIH Diversity Consortium. Specifically, the papers would report results from the implementation of various research mentor and/or mentee training interventions at BUILD (Building Infrastructure Leading to Diversity) institutions using resources from the first phase of NRMN (National Research Mentoring Network). 

We are very pleased to present this Special Issue, The Use and Impact of NIH-fueled Resources for Mentoring— Reports from the Field, consisting of seven papers plus an Introduction from NIGMS and an Overview by the Special Issue editors. We believe this collection reflects state-of-the-art lessons for the UI community.  We also welcome suggestions of topics for other special issues.

All papers were subjected to a two-stage review process, the first overseen by the Special Issue editors, the second by UI Journal reviewers. We are indebted to all the reviewers who shouldered several submissions and revisions— Clifton Poodry, Frances Carter Johnson, John Matsui, Richard McGee, Mona Trempe, Angela Ebreo, and Chantel Fuqua. As always, the technical assistance of Shanta A. Outlaw is appreciated.

With many thanks,

Daryl E. Chubin, Editor & Anthony L. DePass, Publisher

The Use and Impact of NIH-fueled Resources for Mentoring— Reports from the Field


The Diversity Program Consortium Mentor Training 
Mercedes Rubio and Alison Gammie, NIGMS, NIH

Interventions to Optimize Mentoring Relationships for Diverse Biomedical Researchers 
Janet Branchaw, Lourdes Guerrero & Christine Pfund, Special Issue Editors

The NRMN Master Facilitators Initiative: Building a Community of Practice to Broaden Program Implementation
Stephanie C House, Melissa McDaniels, Kimberly C. Spencer, Emily Utzerath, & Christine Pfund

Investigating a Multiple Mentor Model in Research Training for Undergraduates Traditionally Underrepresented in Biomedical Sciences 
Thomas E. Keller & Jennifer Lindwall   

Near-peer Mentoring in an Undergraduate Research Training Program at a Large Master’s Comprehensive Institution: The Case of CSULB BUILD
Sewwandi U Abeywardana, Sarah Velasco, Nancy Hall, Jesse Dillon, & Chi-Ah Chun

How much is enough? The Impact of Training Dosage and Previous Mentoring Experience on the Effectiveness of a Research Mentor Training Intervention
Jenna Rogers, Janet Branchaw, Anne Marie Weber-Main, Kimberly Spencer, & Christine Pfund

BUILD Peer Mentor Training Model: Developing a Structured Peer-to-Peer Mentoring Training for Biomedical Undergraduate Researchers
Danielle X. Morales, Amy E. Wagler, & Angelica Monarrez

The BUILD Mentor Community at CSULB: A Mentor Training Program Designed to Enhance Mentoring Skills in Experienced Mentors
Kelly A. Young   &  Kaitlyn N. Stormes

Introduction to Research: A Scalable, Online Badge Implemented in Conjunction with a Classroom-Based Undergraduate Research Experience (CURE) that Promotes Students Matriculation into Mentored Undergraduate Research  
Laura E. Ott, Surbhi Godsay, Kathleen Stolle-McAllister, Caitlin Kowalewski, Kenneth I. Maton, & William R. LaCourse

S309 How to make mentorship a dream -Acadames Podcast

Today, Sarah talks with Dr. Christine Pfund, a senior scientist at the Wisconsin Center for Education Research at the University of Wisconsin-Madison. Dr. Pfund defines mentorship, discusses how to be a better mentor and mentee and explains why effective mentorship matters within the academy. Together, they consider strategies to cultivate strong mentorship relationships and offer resources for academics at all career stages.

Article authored by Entering Research team presents evaluation data for second edition of Entering Research

Article authored by Entering Research team presents evaluation data for second edition of Entering Research

A recent article in CBE-Life Sciences Education presents two design and development research studies examining the effectiveness of the second edition of Entering Research, an undergraduate and graduate research trainee training curriculum.  In this paper, Entering Research authors Janet Branchaw, Amanda Butz, and Amber Smith describe the process of revising and expanding the curriculum to 96 ​active learning activities, which was a collaborative effort that began in 2015 and involved 24 practitioners across the country.  The manuscript provides a summary of pilot testing data collected from a national sample of 78 facilitators and 565 undergraduate and graduate research trainees from 20 sites, as well as data from four ​Entering Research facilitator training workshops. 
The second edition of Entering Research is available from Macmillan and individual activities are available for free on the CIMER website. For more information on the Entering Research curriculum, evaluation and assessment tools, and upcoming facilitator training opportunities, visit or contact the Entering Research authors at


The second edition of Entering Research (ER) is a collection of customizable active-learning activities, resources, and assessment and evaluation tools for use in undergraduate and graduate research training programs and courses. Results from two design and development research studies examining the effectiveness of the second edition of the ER curriculum and a 2-day ER facilitator training workshop are reported. Pilot testing of the second edition of the curriculum at 20 sites across the country (42 unique implementations) with 78 facilitators and 565 undergraduate and graduate research trainees provides evidence that the ER activities are clear and complete and that they were effective in helping trainees gain knowledge or improve their ability to do research. Overall, research training program directors and trainees were satisfied with courses and workshops that incorporated activities from ER. Likewise, evaluation data from four ER facilitator training workshops showed that participants valued the workshop and reported significant gains in confidence in their ability to successfully develop and implement a custom ER curriculum. Together, these results provide evidence that the ER curriculum and training workshop warrant further efficacy, effectiveness, and scale-up research.

Read the full article at CBE-Life Science Education Online Journal

Meet the Authors

Janet Branchaw

Janet Branchaw

Director of WISCIENCE, Assistant Professor of Kinesiology

Amanda Butz

Director of Evaluation & Research at WISCIENCE

Amber Smith

Associate Director of WISCIENCE & Director of Research Mentor and Mentee Training

Dr Christine Pfund – Improving Mentoring Relationships in Science: Mentors Need Mentors

Dr Christine Pfund is a researcher at the University of Wisconsin-Madison, USA. With a strong network of colleagues and collaborators, her work focuses on developing, implementing, documenting, and studying interventions to optimise research mentoring relationships across science, technology, engineering, mathematics, and medicine. Read on to discover how the success of these initiatives has resulted in the development of a national network of mentors in the USA.

Mentors in Science

Mentors play a critical role in developing the careers of junior scientists. A good mentor inspires, encourages, and supports their mentee. This commitment is especially important for those from traditionally underrepresented groups in science who typically receive poorer quality mentoring than their non-minority peers.

The benefits of mentoring are clear. Mentored graduate students are more likely to publish their research and report greater career satisfaction. Benefits have also been identified for mentors themselves, including increased productivity, sense of fulfilment, and refinement of leadership and other key skills, in addition to their existing subject-specific expertise.

Unfortunately, in some cases, the mentor-mentee relationship is unsuccessful, resulting in a detrimental impact on the happiness and motivation of both parties. This circumstance may be due to a lack of training and support offered to mentors; despite its critical importance, mentors typically learn by example, trial and error, and peer observation.

Dr Christine Pfund at the University of Wisconsin-Madison (UW), along with her colleagues and collaborators, places particular focus on optimising the mentoring relationships that occur in the research context. Currently, this team is leading several national programs based at the UW, including the National Research Mentoring Network (NRMN) and the Center for the Improvement of Mentored Experiences in Research (CIMER). By using evidence-based curricula and approaches to foster the persistence and success of a diverse group of trainers, mentors, and mentees, the team focuses on aligning expectations and strengthening communications for mentoring relationships.

The team has also developed a strong, collective scientific foundation for research mentor and mentee training that includes both face-to-face and online delivery across a variety of disciplines and career stages. Indeed, their work is supported by a convincing track record of success in creating, implementing, publishing, and rigorously investigating interventions for scholars from diverse groups and their mentors.

Dr Pfund leading a mentor training workshop’

UW Madison as a National Mentor Training Hub

The National Institutes of Health (NIH) is supporting the Diversity Program Consortium (DPC) to develop new approaches to engage and support researchers from populations which are underrepresented in biomedical sciences. Due to the established national reputation of Dr Pfund and her colleagues in the field of mentorship, the University of Wisconsin-Madison (UW) became a national hub for research mentor and mentee training for the National Research Mentoring Network (NRMN), part of the DPC.

The NRMN aims to provide all researchers, regardless of their position or background, access to evidence-based mentorship, professional development, and networking opportunities. The main aims of the project in its first phase were to: 1) increase access to mentoring across career stages; 2) improve mentoring relationships through training; 3) increase access to research resources and career development, and 4) promote the value of mentoring. As a nationwide project, the overarching goal is to assist in the development and expansion of a diverse, high-quality biomedical workforce.

As one of the NRMN Principal Investigators, Dr Pfund and the NRMN team developed training materials for both mentors and mentees with a focus on attributes known to impact mentee persistence, including cultural awareness. The team also assembled a group of 32 Master Facilitators who have collectively trained over 6000 mentors across the country. Starting in July 2019, Dr Pfund will launch the NRMN Coordination Center, which will support eleven NRMN research projects and a resource center to catalyse long-term potential across the collective. Dr Pfund and colleagues have also been involved in building capacity for training beyond NRMN, teaching others to implement evidence-based mentor and mentee workshops, and to further extend the reach of the initial programme.

Additional Training for Mentors and Mentees

Dr Pfund and the team are actively involved with other training programs, both at UW and at other institutions, aimed to establish, foster, and promote effective mentoring relationships at a broader level.

For example, at UW, they lead mentor and mentee training efforts at the Institute for Clinical and Translation Research and are part of efforts to optimise the mentorship training provisions for graduate students, post-doctoral trainees, and junior faculty for this and other programs. As part of their work, the team is also developing and testing new training modules and assessment tools.

Dr Pfund also directs the Center for Improvement of Mentored Experiences in Research (CIMER; at UW. Here, the focus is on the development, implementation, and evaluation of mentor and mentee training using theoretically grounded, evidence-based, and culturally-responsive training interventions and investigations. One element of this work involves making evidence-based curricula available to the public. Another element is the development of a platform which can be used to assess researchers’ mentoring experiences both in mentor and/or mentee training as well as in their mentoring relationships.

As part of their national efforts through CIMER, Dr Pfund and colleagues are implementing and testing an integrated mentor-mentee training package in partnership with the Howard Hughes Medical Institute as part of the prestigious Gilliam Fellowships for Advanced Study. Gilliam scholars engage in an evidence-based session at their annual meetings to support effective and proactive navigation of their mentoring relationships. Mentors of the Gilliam scholars engage in a full year of culturally responsive mentor training which includes face-to-face meetings, online modules, and other resources, all with the aim of fostering an environment where mentors can learn and support their peers.

Dr Pfund and two NRMN Master Faciliators discussing ways to improve mentor training curricula
‘Mentoring is known to be a critical factor in the satisfaction, productivity, and advancement of researchers across career stages.’
Chris Pfund
CIMER Director

How and Why Do Mentoring Relationships Work?

It is important to understand how and why mentoring relationships work from a solid theoretical perspective. Dr Pfund and colleagues have investigated several frameworks to inform future practice. These conceptual frameworks consider, for example, what factors are associated with academic persistence and career attainment. They provide a means of understanding the relationships between these factors and experiences, such as mentoring. Social cognitive career theory is one framework that helps explain these factors as potential mechanisms underlying key factors in motivation to reach a specific career goal.

Other frameworks of importance to Dr Pfund and the team include science identity development and social negotiation. These frameworks aim to explain how an individual adopts his/her professional identity and social capital. However, to advance the science of mentorship and understand what works for whom and in what context, more research is needed to determine the most appropriate metrics for assessing mentors, mentees, and mentoring relationships. This question requires further research, and is one of the goals of the NIH Diversity Program Consortium.

Research is also needed to understand the process by which evidence-based approaches in mentoring, such as Entering Mentoring, are disseminated and implemented on a national scale. A recent article by the UW team, led by Kim Spencer and colleagues, describes the approach the team used for national scale-up. Using these approaches, the team has trained more than 600 facilitators nationwide. The majority of these facilitators went on to implement mentor training for more than 4000 other researchers.

It is important to also note that barriers still exist to implementing research-mentor training. These can include a lack of support and resources, including training materials, personnel for planning and organising training, dedicated time for training, and a lack of confidence in implementation. However, outcomes from facilitator training sessions have revealed that having attended, delegates report more confidence and preparedness, and also reported that the opportunity to develop connections with other delegates was invaluable.

Dr Pfund and the NRMN Master Facilitators

Key Findings

When asked what the key findings of current and past projects were, Dr Pfund identified the following take-home messages:

  1. Mentor and mentee training interventions can improve the knowledge and skills of both mentors and mentees, and improve the effectiveness of mentoring relationships.
  2. Despite evidence supporting the importance of mentoring, it remains unclear which mentoring relationships have the most impact. What specific factors best account for key outcomes in mentoring success? Critically, mentoring relationships do not occur in isolation – they are inherently woven into the social and cultural contexts of individuals and their academic institutions.
  3. Facilitator training/train-the-trainer workshops are a demonstrably effective means of national dissemination and capacity-building.
  4. Critical factors, known to impact mentees persistence and development in their careers, can be incorporated into mentor and mentee training. In this way, mentors and mentees are better able to address these factors in their relationship(s).

We can clearly see how the work of Dr Pfund and her colleagues benefits all – mentors, mentees, and the scientific workforce more generally. As Dr Pfund notes, ‘Mentoring is known to be a critical factor in the satisfaction, productivity, and advancement of researchers across career stages.’

By building, improving, and evaluating the relationships between mentors and mentees, this work is playing a critical role in shaping the success of research establishments from local to national levels within the USA, with potential for application even further afield.

Meet the researcher

Dr Christine Pfund

Wisconsin Centre for Education Research
University of Wisconsin
Madison, WI

Dr Christine Pfund is a Senior Scientist at the Wisconsin Centre for Education Research at the University of Wisconsin-Madison (UW). She is also director of the Centre for the Improvement of Mentored Experience in Research (CIMER) at UW, one of the principal investigators of the National Research Mentoring Network (NRMN). Dr Pfund completed a PhD and post-doctoral projects at UW and served as the Associate Director of the Delta Program in Research, Teaching, and Learning and the Co-Director of the Wisconsin Program for Scientific Teaching for more than a decade. Dr Pfund’s work is conducted in collaboration with an established network of colleagues and collaborators, focusing on the development of mentor-mentee relationships across several academic disciplines. Currently, Dr Pfund is co-leading multiple studies focused on the impact of training on both mentors and mentees, and understanding specific factors in mentoring relationships that account for positive student outcomes. She is a member of the National Academies committee that recently published the consensus report and online guide, The Science of Effective Mentorship in STEMM.





Dr Janet Branchaw, University of Wisconsin-Madison, USA

Dr Christine Sorkness, University of Wisconsin-Madison, USA

Dr Angela Byars-Winston, University of Wisconsin-Madison, USA

Dr Rick McGee, Northwestern University, USA


National Institutes of Health (Common Fund, NIGMS, and NCATS)

Howard Hughes Medical Institute

National Science Foundation


A Byars-Winston, V Womack, A Butz, R McGee, S Quinn, E Utzerath, C Saetermoe, S Thomas, Pilot study of an intervention to increase cultural awareness in research mentoring: Implications for diversifying the scientific workforce, Journal of Clinical and Translational Science, 2018, 2(2), 86–94.

J Rogers, CA Sorkness, K Spencer, C Pfund, Increasing research mentor training among biomedical researchers at Clinical and Translational Science Award hubs: The impact of the facilitator training initiative, Journal of Clinical and Translational Science, 2018, 2(3), 118–123.

KC Spencer, M McDaniels, E Utzerath, JG Rogers, CA Sorkness, P Asquith, C Pfund, Building a sustainable infrastructure to expand research mentor training, CBE Life Sciences Education, 2018, 17:ar48, 1–11.

CA Sorkness, C Pfund, EO Ofili, KS Okuyemi, JK Vishwanatha, NRMN team, A new approach to mentoring for research careers: The National Research Mentoring Network, BMC Proceedings, 2017, 11, 171–182.

C Pfund, A Byars-Winston, J Branchaw, S Hurtado, K Eagan, Defining attributes and metrics of effective research mentoring relationships, AIDS and Behavior, 2016, 20, S238–S248.

AM Byars-Winston, J Branchaw, C Pfund, P Leverett, J Newton, Culturally diverse undergraduate researchers’ academic outcomes and perceptions of their research mentoring relationships, International Journal of Science Education, 2015, 37, 2533–2554.




From service to science: NIH shifts focus of mentoring network aimed at boosting grantee diversity

By Jeffrey Mervis

Christine Pfund (left) leads the the National Research Mentoring Network’s coordination center. TODD BROWN/UNIVERSITY OF WISCONSIN, MADISON

As co-director of graduate affairs at the University of Chicago, Nancy Schwartz spent the past 4 years helping faculty members at 15 major research universities become better mentors. The project was supported by the National Research Mentoring Network (NRMN), a $23 million effort that the National Institutes of Health launched after discovering an embarrassing racial gap in who gets NIH grants.

Begun in 2014, NRMN was designed to scale up successful mentoring practices in the biomedical sciences. NIH officials hoped its efforts would boost the fortunes of minority applicants. But last summer, when NIH renewed the network for another 5 years, officials decided to spend most of the money on the science of mentoring, that is, testing different approaches to mentoring with a small, carefully chosen population. Barely 10% of NIH’s $50 million investment in phase two of NRMN is going to the type of services, including an online portal that provides one-stop shopping for a cornucopia of mentoring activities, that characterized first phase.

Schwartz’s project is a casualty of that shift in emphasis from service to research. And she is one of several researchers familiar with NRMN who wonder whether something will be lost as NIH remakes the program. “What’s wrong with more service?” she wonders. “Or at least a mix of both approaches?’”

Using what we know

NIH’s decision to refocus NRMN comes as the role of mentoring in training scientists is attracting greater attention from researchers. In fall 2019, a panel assembled by the National Academies of Sciences, Engineering, and Medicine (NASEM) released a major report that makes the case for mentorship as a worthy field of study and describes several areas where more research is needed. “Despite its important place in academic scientific culture, mentoring rarely receives the focused attention, evaluation, and recognition of other aspects of professional development such as teaching and research,” it declares.

That lack of attention is what drove NIH to pour $39 million into 11 studies of mentoring as part of NRMN’s second phase, says Hannah Valantine, NIH’s chief officer for scientific workforce diversity. An additional $5.5 million will go to a center to coordinate those studies, and the remaining $5.5 million to what is now called the NRMN resource center.

Valantine says the research projects should help NIH understand why a particular approach works. “In phase one we did very important work with mentoring and coaching workshops and they look as if they are working well,” Valantine says. “But because those activities didn’t include a randomized control trial, we don’t know if there was selection bias. We don’t want to continue spending resources on an activity if there isn’t evidence that it is working really well.”

At the same time, the authors of the NASEM study urged their colleagues not to wait for more data before making changes in how students, including those from groups underrepresented in science, are trained for academic careers in biomedical research.

“A growing body of evidence exists about how to create and sustain successful and inclusive mentoring relationships,” says Angela Byars-Winston, a professor of medicine at the University of Wisconsin (UW), Madison, and chair of the committee that wrote the report. “We hope our report can catalyze [the] use of that evidence.”

Jamboor Vishwanatha runs the National Research Mentoring Network resource center. ALEXIS SHORT/NATIONAL RESEARCH MENTORING NETWORK RESOURCE CENTER

Putting mentoring on the map

For 5 years, NRMN has been a mechanism to do exactly that. Nearly 15,000 people have registered through its online portal. For some students, it’s the first step toward a guided virtual mentoring experience with a faculty member who matches their interests. Thousands more have taken advantage of other types of NRMN-arranged professional development. Postdocs and early-career scientists have learned how to write better grant proposals, faculty members have improved their mentoring skills, and an elite group has been trained to share knowledge with colleagues.

The scientists involved in phase one of NRMN have also worked hard to disseminate their results so that others can put them to use. A string of publications by NRMN investigators “offer interesting evidence on what works and doesn’t work in trying to scale mentoring to a national audience,” says Christine Pfund, a UW Madison developmental biologist.

Pfund ran the mentor training core in NRMN’s first phase and now oversees the phase two coordinating center. In addition to generating results, Pfund says NRMN 1.0 has helped put mentoring on the academic map.

“NRMN brought together the entire research community to talk about where mentoring was and where it needs to go,” she says. “So, I think it’s had a huge impact on raising the visibility of mentoring.”

Pfund and her NRMN colleagues acknowledge the shift in emphasis. “Yes, NIH is going in a different direction,” says Jamboor Vishwanatha, who ran the online component of NRMN and who now leads the renamed resource center. But they say NIH’s vote of confidence is appreciated and insist their ability to provide direct services won’t be curtailed.

“NIH has told us that we were very successful,” Vishwanatha says, “And everything we were doing—the web portal, online platform, the matching process, and the network—is continuing.”

NRMN was never meant to demonstrate the type of efficacy that Valantine wants to see in phase two, according to Pfund. Phase one wasn’t “resourced sufficiently” to study why a particular approach to mentoring worked, and for which audience, she says. Phase two will allow for that type of deep dive, she adds.

Byars-Winston, who was also part of the NRMN 1.0 team, says she can’t wait to take the plunge. “There was no money for research in phase one,” she says. “Now, in phase two we can experiment.”

In her case, that means leading a project aimed at addressing cultural biases in mentoring, one of the hottest topics in the field. Byars-Winston and her team hope to train 600 faculty members at 32 universities in understanding and practicing culturally aware mentorship (CAM), then assess how that training affects both how they mentor their graduate students and institutional policies relating to diversity and inclusion.

A counseling psychologist who studies the impact of culture on career development in academic settings, Byars-Winston has spent 2 decades experimenting with various facets of CAM. She says NIH’s new approach to NRMN will give her a chance to drill down even deeper into the science of mentoring and run more experiments. “And for us, the experiment is dosage,” she explains. “Does a half-day of training have the same impact as a full day? That’s a hard-core research question.”

Taking an institutional approach

Schwartz, meanwhile, finds herself on the outside for phase two. She applied for one of the science-of-mentoring awards, but didn’t make the cut, despite the success of her phase one project.

Over a career spanning 5 decades, Schwartz has received NIH support for both her research on skeletal and brain development and disabilities and her commitment to improving graduate training in the biomedical sciences. The NRMN grant she received in 2015—a $250,000-a-year supplemental award—allowed her to expand her work with the Committee on Institutional Cooperation, a 15-school consortium that served as a Midwest hub for NRMN.

The project addressed training issues across the academic research pipeline, from bolstering the self-esteem of first-year graduate students to facilitating the mentoring activities of senior faculty members. Schwartz, who is also a professor of pediatrics, has yet to publish her results, but preliminary analyses suggest its interventions had exactly the type of impacts that NIH had hoped NRMN would achieve.

For example, the 160 faculty members who were trained as facilitators returned to their campuses and led mentoring workshops attended by 2700 students, postdocs, and other faculty—demonstrating the ability to scale up successful practices. A majority of the 137 people in the grant-writing workshops were underrepresented minorities, showing that these services can reach their target audiences. And those young scientists have put the knowledge to good use: Nearly half of their applications to NIH and other funding sources have been successful, and many of the postdocs have been hired into tenure-track faculty positions, including some at the institutions involved in the project.

“We were able to put together multiple things that had been shown to work on their own,” Schwartz says. “And combining them amplified their impact.” NRMN leaders apparently agreed: Of five supplemental awards and 10 other small projects, hers was the only one that survived a midcourse vetting.

Schwartz suspects her comprehensive view of mentoring wasn’t a good fit for the individual research projects that NIH wanted to fund. “We took an institutional approach,” she says. “So, there’s no way for us to plug into phase two of NRMN. Everybody liked what we were doing, so it’s frustrating not to be able to continue.”

Using NRMN as a springboard

Elizabeth Jakob is having a much easier time staying connected to NRMN. But she’s also worried that its revamped structure may hinder further expansion of mentoring efforts like hers.

A behavioral ecologist and associate dean for the graduate school at the University of Massachusetts (UMass), Amherst, Jakob runs a mentoring academy based on NRMN training she received. The academy’s ability to operate on a shoestring budget is a testament to what NRMN was able to accomplish by emphasizing service, she says.

“Without NRMN, maybe we could have put out a handbook, or brought in a few speakers,” Jakob says. “But definitely not the type of mentor training that we’ve been conducting.”

Jakob admits she was skeptical of the value of the first NRMN-sponsored workshop she attended. “I had been through other training that didn’t make a difference,” she says, “But its superinteractive format keeps you engaged.” After honing her skills, she began to think about what it would take to reach the 1100 tenured and tenure-track faculty members at UMass.

“I realized I couldn’t do it myself,” she admits. A dozen colleagues stepped up and took the additional training needed to become a facilitator. Armed with enough instructors, she began to advertise the course across the entire campus. That’s when she realized that marketing skills were as important as mentoring skills.

As Jakob tells it, “Having a department chair say, ‘I took it and it was worthwhile,’ is a lot more effective than saying, ‘Hey, we noticed your students are taking a very long time to graduate. Maybe you should think about ways to provide them with better guidance.’”

Those endorsements help her hold down the cost of the training. “Faculty just show up,” Jakob says. “We don’t provide any payment or incentives.” Trainers receive a small stipend, she adds, but the only other expenses are coffee, doughnuts, and the training materials.

Jakob estimates that more than 20% of the faculty have been trained since the workshops began in 2017. She thinks she needs to reach at least 40% to make a lasting impact on the quality of graduate education mentoring at UMass. But it’s a question she may never be able to answer.

“What’s difficult is measuring the impact on mentees,” she admits. “We haven’t been collecting the data ourselves.”

That’s been the role of NRMN for the past 5 years, she says. “We implement their training modules, and we just assume that they are following up.”

That assumption may have been true during NRMN 1.0, when Pfund led an administrative center than managed all NRMN-related programs. She also directed NRMN’s mentor training core, of which Jakob’s academy was an offshoot. Data were collected and passed along to an evaluation center based at the University of California, Los Angeles (UCLA).

But NRMN 2.0 doesn’t have the same reporting lines of authority. The UCLA scientists will be collecting and analyzing some follow-up data on the online mentoring and mentor training components of phase one but will not handle anything coming from the 11 research projects. And Pfund’s phase two coordinating center has no administrative authority over the 11 research projects.

“It is not appropriate for the coordination center to have any input in the study design or their recruitment effort,” Pfund explains. “Those issues are between the project and their NIH program officer.”

Members of the National Research Mentoring Network engage in a team-building exercise. KRISTIN STEINER, PUBLIC RELATIONS ASSOCIATE/UNIVERSITY OF UTAH

Helping students and faculty

Some of the projects in NRMN’s second phase put down strong roots during phase one. For example, Manoj Mishra, a biologist at Alabama State University, will be testing variations of NRMN’s online mentoring training on first-year students at his and two other historically black institutions in the South. One group of 150 students at each campus will be automatically enrolled in NRMN after arriving on campus and given instructions on how to use the online resources. A second group of equal size will not only join NRMN, but will also receive coaching, peer mentoring, and mentee training. A third group, the control, will consist of those who decline any mentoring support.

The goal is to measure the impact of the mentoring intervention on the students’ undergraduate experience—for example, did they pursue a science major, did they engage in research, and did they build a stronger support network as a result of the mentoring? The last variable is especially relevant for students at Alabama State, Manoj says.

“Some 60% of our freshmen come from rural areas, and Montgomery is the first time they’ve been in a city,” he notes. “Some of them need the motivation and mentoring just to keep from dropping out and going home.” The project adds an experimental element to what Vishwanatha’s team has been doing in serving those who come to the NRMN portal voluntarily.

In contrast, Akshay Sood’s project tackles an issue within a population that was not central to phase one. A pulmonologist at the University of New Mexico’s (UNM’s) health science center, Sood and his team will be measuring the efficacy of online versus face-to-face mentoring to reduce attrition among faculty members at UNM, Arizona State University, and the University of Oklahoma. Attrition is a major problem among women and underrepresented minorities, he says.

“Most of our faculty are clinician educators with a heavy teaching and clinical load,” he says. “But they also need to maintain an active research program.” The target audience is junior faculty members, where turnover is nearly 50% over 5 years. The project is unique in having early-career faculty members as mentees, he adds.

An uncertain future

NRMN is part of the Diversity Partnership Consortium that NIH created in the wake of a 2010 report by University of Kansas, Lawrence, economist Donna Ginther showing that African American applicants stood a much lower chance—by 10 percentage points—of receiving a bread-and-butter research project grant (R01). The bulk of NIH’s initial 5-year, $250 million investment in the consortium went to 10 projects aimed at helping minority undergraduate students taking their first step toward a career in biomedical research, and those projects have been renewed for another 5 years.

Valantine has calculated that the funding gap could be eliminated through a relatively modest increase in the absolute number of African American scientists who win NIH grants. But she’s not willing to settle for parity.

“The biggest problem is the minuscule number of African American scientists in tenure-track positions in biomedical research,” she says. “That is what leads to the tiny number who are applying for R01 grants. Of course, we want to eliminate the gap, and I am confident we will be able to do so. But that would not be victory in my mind,” because she would like to see an increase in overall numbers.

NRMN 1.0 was all about putting more minorities in a position to submit winning grant applications. That meant tackling all the components involved in training the next generation of scientists, with better mentoring and grantwriting skills at the top of the list.

But doing that takes time. NRMN investigators always assumed they would need to find another source of support after the diversity consortium went out of business. “One of the major goals of phase two is sustainability,” Valantine says.

The principal investigators on the new research projects say they have not been told what will happen when their grants end in 2024. “It’s a research grant,” Sook says. “If the results are good, we certainly hope that NIH will want to renew it.”

The stakes are even higher for those who have been with NRMN since its formation. Enlarging the pool of scientists engaged in and benefiting from high-quality mentoring remains their top priority. But they aren’t sure what sustainability means under the new format for NRMN 2.0.

“We’re all concerned,” Pfund says. “We’ve been told that funding [for NRMN] will end in 10 years, and we don’t know what NIH is planning to do after. Whatever happens, she says, “we don’t want people to feel abandoned.”

UW−Madison Mentorship Experts Anchor Federal Push to Diversify Biomedical Workforce

UW−Madison Mentorship Experts Anchor Federal Push to Diversify Biomedical Workforce

WCER investigators Christine Pfund, Angela Byars-Winston receive major grants

October 31, 2019   |   By Karen Rivedal, WCER Communications

UW-Madison expertise is key to a new $43 million federal effort to bring more women and minorities into the biomedical sciences.

UW-Madison expertise is key to a new $43 million federal effort to bring more women and minorities into the biomedical sciences.

UW−Madison will continue to play a leading role in the second and final phase of a sweeping federal investment in better research mentoring, with responsibility for two major grants in the $43 million follow-up push to boost diversity of students, staff and faculty researchers in the biomedical sciences.

The five-year program starting this fall as part of the NIH’s Diversity Program Consortium follows a $19 million first phase that sought to increase participation of underrepresented groups in the biomedical workforce through development of a National Research Mentoring Network (NRMN) starting in 2014.

That network, which remains active in Phase 2, works to enhance the training and career development of people from diverse backgrounds in biomedical research — including underrepresented populations such as women and minorities — through an online clearinghouse of evidence-based training programs for mentors and mentees, webinars and networking opportunities, including a guided mentoring tool.

UW−Madison was central to Phase 1, serving as a national hub for mentorship training through a $3 million grant awarded to Christine Pfund. Pfund directed the NRMN’s Mentor Training Core as one of five principal NRMN investigators in Phase 1, and also worked as a researcher in the School of Education’s Wisconsin Center for Education Research (WCER) and at the UW Institute for Clinical and Translational Research.

But while the Mentor Training Core gathered a comprehensive suite of programs in culturally responsive mentoring, Phase 2 goes a step further. While continuing to develop mentoring opportunities for biomedical researchers, from undergraduates through early career faculty, Phase 2 focuses on the rigorous testing of selected interventions to determine what approaches work best for whom and in what context.

National profile of mentoring rises with NAS report

The importance of better mentoring has been increasingly recognized across government and academia over the past decade as a driver for improved career satisfaction, progression and productivity in many fields of work and academic pursuits, but especially as a tool to broaden participation in the disciplines of science, technology, engineering, math and medicine (STEMM).


Report cover

This week, mentoring’s ascending role was recognized with the release of a comprehensive consensus study on the science of effective mentorship in STEMM by the National Academy of Sciences.

The 287-page report, plus an online guide to recommended tools and resources, was produced by a national ad hoc committee led by Angela Byars-Winston, a UW−Madison Department of Medicine professor and investigator with WCER’s Center for the Improvement of Mentored Experiences in Research. Pfund, who directs CIMER, also is among the committee’s 12 members, in a dual nod to UW−Madison’s 15-year record of working to improve research-based mentorship.

A consensus report matters in part because it acts to collate and critically review all the evidence-based findings on a given science or topic, plus identify gaps in knowledge and directions for future research.

“There’s so much we still don’t know,” Byars-Winston says. “The traditional dyad of mentoring (one faculty member/one student) is just one model. We also know that peer mentorship and having multiple faculty mentors can be effective. What has the best impact, and for who? Does it matter if we have the same race and gender? We also have a lot of wonderful studies that exist, but replication is everything.”

UW−Madison unique in Phase 2 representation

In Phase 2, the five cores* that made up NRMN’s first phase, including Pfund’s Mentor Training Core, cease to exist. In their place is a resource center, coordination center and a third arm made up of 11 research projects using experimental designs to expand the scientific scope of the NRMN initiative.

The 11 independent research projects are based at institutions across the country and must be focused around one of three primary areas of intervention determined to enhance mentoring and networking: the science of mentoring, professional networks and the navigation of critical career-transition points.

Pfund received a $5.4 million grant to lead the coordination center in Phase 2 of the NRMN initiative. In addition, Byars-Winston was awarded a $3 million grant as director of one of the 11 research projects: a nationwide intervention to train 600 faculty mentors of doctoral students in 32 biomedical programs, including one in-person training session for each participant.

That representation puts UW−Madison in rare air, as the only institution in the country to boast PIs in two of the three branches that make up Phase 2 of the NRMN initiative.

“No one else in the initiative has two,” Pfund says. “It’s an exciting time.”

Pfund leads coordination center in Phase 2

During Phase 2, the resource center, to be run by the University of North Texas’ Health Science Center with a $4.6 million grant, is tasked with managing and continuing to refine the guided mentoring tool and the NRMN website, including regular posting of public reports on the 11 research projects’ progress.

The coordination center, meanwhile, will coordinate the early stages of data collection from the research projects and provide feedback to “promote synergies” between the resource center and the 11 projects to catalyze and maximize research benefits, according to the National Institutes of Health (NIH)


Christine Pfund

“Specifically, the NRMN Coordination Center will create the infrastructure to support substantial coordination, collection, storage, tracking, and reporting of all NRMN data, as well as implement responsive communication strategies that will effectively and efficiently build communities of inclusive practice, foster research innovations, and disseminate key findings,” the NIH says. 

Pfund says her team is “thrilled” to lead the coordination center in NRMN’s second phase.

“Our goal is to support NRMN research projects through collaboration to seize long-term potential across the collective,” she says. “Continuing the important work started in Phase I, we will provide the infrastructure needed to help the resource center and the 11 research project investigators maximize their knowledge about which interventions work, for what populations, and under what conditions. We will strive to create synergy across diverse projects and ideas to achieve a holistic perspective, thus contributing to NIH’s ability to shift the paradigm in biomedical research workforce development.”

Pfund says she plans that the coordination center also will:

  • bring together investigators’ “diverse cultural experiences, perspectives, expertise, disciplines, and theoretical frameworks as they work to increase diversity in the biomedical workforce.”
  • catalyze collaborations to generate new knowledge over the next five years.
  • lay the groundwork for the next decade of research in the areas of mentoring, professional development and networking.

600 mentors to be trained with Byars-Winston grant

Byars-Winston says her team has confirmed about half of the 600 faculty mentors who will participate in her research project – titled “Impact of Culturally Aware Mentoring Interventions on Research Mentors and Graduate Training Programs,” – with recruiting underway starting this week for the rest.

Designed to facilitate the academic success of biomedical doctoral students by training their faculty mentors to better reach them through culturally aware mentoring practices, the project will measure both individual outcomes and any organizational changes seen in mentors’ departmental cultures.


Angela Byars-Winston

Department culture matters, Byars-Winston notes, because it often communicates “who belongs in science” through the messages it sends with its policies, practices and training programs.

“It’s about who gets selected to report the research coming out of a project, or who gets nominated for an award or whose work is valued in the newsletter,” she says. “Does the department communicate a climate that says, ‘We believe in every student’s success’? Or is it more about winnowing people out, telling them, ‘Take one look to your left and one to your right, and one of you won’t be here next year’?”

The basics of good mentorship include aligning expectations between mentor and mentee and having clear communications, while a key adjustment for many would-be mentors in biomedical science is just accepting that mentoring is a practice that can be learned – that it’s not just innate or not, and that it’s not the same as being competent in a particular discipline, Byars-Winston says.

“We see that attitude, especially in research mentoring, and we want to shift that,” she says. “It is a learned skill, there are competencies, you can be educated to do it better.”

Everyone wants to ‘feel valued and heard’

When teaching faculty mentors about the culturally aware aspects of research mentoring, Byars-Winston says the key is respecting differences while recognizing aspects of universality.

“We start with understanding that we’re all cultural beings,” she says. “Whether I’m a white male or a Chinese woman or some other gender/ethnicity, I start off with the idea that we all have culture, and the last common denominator is that every individual wants to feel valued and heard.”

The curriculum in her research project is to be provided online and in-person, with one testing variable focused around when the in-person intervention occurs. In Phase 1, the program was offered only in one eight-hour day, so that factor will be changed up and measured, too.

“We don’t know if we’re going to find the same effectiveness as we did before,” Byars-Winston said. “It really is a true experiment with three different formats and doses.”

Measuring two types of outcomes throughout the study’s five-year window also distinguishes it.

“This is pretty powerful stuff for us because we’ll have the first set of data that we know of in research on STEMM environments that will have this longitudinal experimental study at both the individual and institutional levels,” Byars-Winston says.

The other 10 research projects in Phase 2 include studies to:

  • build a diverse biomedical workforce through communication across difference.
  • identify the influence of psychosocial support on personal gains and objective career outcomes.
  • examine inclusive mentor networks, which includes, as one of the four principal investigators from different institutions, Jo Handelsman, a UW-Madison Vilas Research Professor and mentoring pioneer who now directs the university’s Wisconsin Institute for Discovery.

*Phase 1 also had a core for administration through Boston College; for research resources and outreach at the Morehouse School of Medicine in Atlanta; for professional development offering relevant training other than mentoring, such as grant-writing, run by the University of Utah, School of Medicine; and for mentorship and networking, at the University of North Texas Health Science Center, which handled the initial development and maintenance of the NRMN website, as well as development of the guided, virtual mentorship tool known as MyNRMN. The mentorship programs formerly gathered under the Mentor Training Core and the MyNRMN tool continue to live on the NRMN website.

The Science of Effective Mentorship in STEMM

By NASEM Board on Higher Education and Workforce (BHEW)

The Science of Effective Mentorship in STEMM

Public Release 
Wednesday, October 30, 2019
1:00pm – 3:00pm EDT

Please join us for the release of the new National Academies report, The Science of Effective Mentorship in STEMM, which systematically compiles and analyzes current research on the characteristics, competencies, and behaviors of effective mentors and mentees in STEMM. In addition to the comprehensive report, the committee will debut a practical resource guide for mentoring practitioners to create and support viable, sustainable mentoring support systems.

View additional details about this project at

Training Opportunity: Enhance undergraduate and graduate research training programs with Entering Research

Facilitator Training workshops for Entering Research (undergraduate and graduate researcher training) will be held February 13-14, 2020 and June 4-5, 2020 at UW-Madison. In this two-day event co-hosted by the Center for the Improvement of Mentored Experiences in Research (CIMER) and the Wisconsin Institute for Science Education and Community Engagement (WISCIENCE), participants will learn about Entering Research, a training curriculum designed for undergraduate and graduate research trainees in STEMM.


Participants will learn evidence-based approaches to researcher training and gain the knowledge, confidence, and facilitation skills needed to design, implement, and evaluate an Entering Research training at their institutions. Participants will build their own custom curriculum based on the needs of their trainees by selecting from nearly 100 activities that address seven areas of trainee development: research communication & comprehension skills; practical research skills; research ethics; researcher identity; researcher confidence & independence; equity & inclusion awareness & skills; and professional & career development skills.

Program directors, administrators, faculty, instructors, and staff of undergraduate and graduate research training programs are encouraged to apply.  Each workshop is limited to 32 participants. Please visit the Facilitating Entering Research website for more information and to reserve your spot in one of the upcoming workshops. To join our listserv and learn about upcoming workshops, please complete this online form.